Changes in egg size of exotic passerines introduced to New Zealand

PHILLIP CASSEY
School of Biosciences, Birmingham University, Edgbaston, B15 2TT, United Kingdom. Present address: Wharekaho Crescent, Whitianga, New Zealand. p.cassey@bham.ac.uk

TIM M. BLACKBURN
School of Biosciences, Birmingham University, Edgbaston, B15 2TT, United Kingdom.

KARL L. EVANS
Department of Animal & Plant Sciences, University of Sheffield, Sheffield, S10 2TN United Kingdom.

Abstract Bird species introduced to New Zealand from high northern latitudes are expected to change their breeding behaviour to conform to well-known geographic gradients in avian reproductive parameters. Here, we demonstrate reductions in average egg size and clutch volume for eight species of exotic passerine originating in the UK, and show that the magnitudes of these reductions appear to trade-off against reductions in annual variation in clutch size. Possible reasons for the trade-off are discussed.

Keywords Ashmole’s hypothesis; clutch volume; egg size; introduced birds; reproductive effort.

INTRODUCTION

The global distributions of 13 European passerine species have been extended through their successful introduction into New Zealand (Duncan et al. 2005). In a number of cases these birds have been so successful that they have spread to become more widely distributed than native New Zealand species (Cassey 2001). New Zealand potentially represents a different selective environment for these species. In particular, it is well-known that the clutch sizes tend to be smaller in the southern hemisphere and fledging periods longer than at equivalent northern latitudes (Lack 1948), implying that species are responding to different selection pressures (qualitative or quantitative) on breeding in the different hemispheres (e.g. Chown et al. 2004). Thus, as exotic species have colonised New Zealand from Europe we might expect their breeding biology to have diverged from that of their native ancestors.

Recently, Evans et al. (2005) used data from the Ornithological Society of New Zealand (OSNZ) and British Trust for Ornithology (BTO) nest record schemes to test for such changes in 11 species of passerine introduced to New Zealand (NZ) from the United Kingdom (UK). They showed that nine of these species had significantly smaller clutches in NZ than in UK, as expected from differences between hemispheres in clutch size (see also Niethammer 1970). Further, these species showed less seasonal variation in clutch size in NZ relative to UK. Both of these changes concur with predictions of Ashmole’s hypothesis (Ashmole 1963) viz. that increased seasonality at high northern latitudes produces greater resource abundance per adult bird in the breeding season, resulting in larger clutch sizes but also more seasonal variation in clutch size. If Ashmole’s hypothesis was the only explanation, however, clutch size change should also have been correlated with the change in seasonal clutch size variation, but these variables were uncorrelated (Evans et al. 2005).

The number of eggs laid is only one way by which birds can modify their investment in a clutch. They can also change egg size. Egg size data for exotic passerines in New Zealand were not available to Evans et al. (2005), but have subsequently become so for eight species through extensive fieldwork on the North Island (Cassey et al. 2005). Here, we combine these data with measures of egg size from UK, and with the data from Evans et al. (2005), to substantially extend their results by considering...
changes in clutch volume. We explicitly test the relationship between seasonal variation in clutch size and clutch volume. If Ashmole’s hypothesis is correct then we expect reduced seasonality in clutch size in NZ to correlate with decreasing clutch volume.

METHODS
Cassey et al. (2005) measured 350 eggs from 148 naturally occurring clutches during the breeding season of 2003-2004 for eight exotic passerine species: song thrush (Turdus philomelos; \(n \) [number of clutches] = 38), blackbird (T. merula; \(n \) = 32), starling (Sturnus vulgaris; \(n \) = 29), greenfinch (Carduelis chloris; \(n \) = 9), goldfinch (C. carduelis; \(n \) = 11), chaffinch (Fringilla coelebs; \(n \) = 11), yellowhammer (Emberiza citrinella; \(n \) = 3), and house sparrow (Passer domesticus; \(n \) = 15). Eggs were measured using Vernier callipers and precision electronic scales, and their breadth, length, and mass recorded. Average egg sizes (breadth and length) for these same species in their UK ranges were estimated from references in Handbook of the birds of Europe, the Middle East and North Africa Vols 1-9 (Cramp et al. 1977-1994).

We first compared egg sizes to test for differences between NZ and UK. Clearly, if egg sizes have not changed, patterns for changes in clutch volume will not differ from those in clutch size shown by Evans et al. (2005).

Evans et al. (2005) obtained clutch size data for each of the eight species from national nest record card schemes organised by the BTO (Crick et al. 2003), and OSNZ (Robertson 1986). The UK data spanned the years 1923-2000 and comprised 39,595 nest records, and the NZ data covered the period 1925-2002 and comprised 3,350 nest records. In both data sets the vast majority of data were from the most recent decades. Founder populations of the eight species were mainly introduced from UK between 1862 and 1885 (Thomson 1922), and so the

![Figure 1](image_url)
& Gentleman 1996). We also performed the analysis controlling for phylogenetic non-independence using the method of phylogenetic generalised least squares (PGLS) (Grafen 1989; Martins & Hansen 1997; Garland & Ives 2000; Freckleton et al. 2002) and the phylogenetic hypothesis for the relatedness among these species as specified in Cassey et al. (2005). However, this method revealed no phylogenetic correlation in these data, and hence we report only the analyses across species.

RESULTS
Average egg volume was lower in NZ than in UK for all eight passerines (Table 1), and the decrease was significant across the sample ($t = -3.82, n = 8, P < 0.01$). Across species, the decrease in average egg volume was not associated with the previously observed change in average clutch size between regions (slope = -0.06, $se = 0.51, n = 8, R^2 < 0.01, P = 0.91$), and neither was it associated with the change in CSR between regions (slope = -0.54, $se = 0.27, n = 8, R^2 = 0.40, P = 0.09$). However, there was a significant negative relationship between proportional change in CV and CSR following introduction to New Zealand (Figure 1).

DISCUSSION
The processes by which populations diverge constitute important and dynamic parts of the ecological past of all species, yet, they can be extremely difficult to study based solely on observations from extant distributions. A wide range of biotic and/or abiotic factors may drive differences between populations, but inferences about the causes of such differences can also be confounded if, as is usually the case, the precise historical relationships between populations are unclear. Exotic species thus represent a useful natural experiment in that the history of the exotic population is often well-known, allowing comparisons between populations that are unambiguously related. Differences between the taxa can thus be assigned to the period following translocation, even if the causes of those differences may still difficult to pin down.

Niethammer (1970) was the first to show differences in breeding parameters for passerine bird species translocated from UK to NZ, finding reduced clutch sizes in six species (blackbird, song thrush, starling, chaffinch, goldfinch, house sparrow). MacMillan (1985) showed that the same was true for greenfinch. Evans et al. (2005) were able to confirm these differences and show additional reductions in clutch size for skylark ($Alauda arvensis$) and dunnock ($Prunella modularis$). As far as we are aware, this is the first study to demonstrate declines in egg volume in NZ for the seven species for which Niethammer (1970) and MacMillan (1985) demonstrated clutch size reductions, plus the yellowhammer. The changes in both clutch size and egg volume imply reduced investment in average clutches in NZ relative to UK. Whether this also translates into an overall decline in reproductive effort over the course of a year, or over the lifetime of an individual bird, awaits better data on changes in both number of broods per year and longevity.

The changes in clutch size, combined with changes in the annual variation in clutch size, are consistent with Ashmole’s hypothesis: declines in clutch size are correlated with an overall shift from more to less seasonal conditions (Evans et al. 2005). However, a substantial shortcoming with Ashmole’s hypothesis as an explanation for these changes is that it predicts that species showing the greatest declines in clutch size should also be those experiencing the greatest shift in seasonality, and hence those species with the largest changes in CSR. Yet, Evans et al. (2005) were unable to demonstrate a positive correlation between clutch size decrease and change in CSR for these passerines. When egg size is added to the equation, and change in clutch size is replaced by change in CV, a significant negative correlation with CSR results. Rather than the largest changes in clutch size variation leading to the largest changes in CV, these changes trade off. This suggests that selection for reduction in the investment a bird places in each clutch in NZ may be achieved in one of two ways: a species either reduces the annual variation in clutch size in NZ, or it reduces its CV, but not both together.

There are two possible reasons for this trade-off. First, species are limited by the magnitude of either of these traits in their UK habitats. For example, species with relatively low CSR in UK may not be able to lower CSR much further in NZ. Similar arguments may also apply to CV. If either was the case, however, we would expect a correlation between CSR (or CV) in UK and the proportional change in that trait following introduction to NZ. In fact, the proportional change in CSR following introduction to NZ was unrelated to CSR in UK ($r = -0.04, n = 8, P = 0.91$), and similarly there was no relationship between proportional change in CV following introduction to NZ and CV in the UK ($r = 0.43, n = 8, P = 0.29$).

Second, phenotypic plasticity may influence the ability of species to change their breeding parameters. It has been shown that egg size is probably a less plastic trait than clutch size (Arroyo et al. 1998). However, the fact that species have changed their egg size following introduction to NZ suggests some advantage to the change if it is indeed possible. Perhaps, only the most phenotypically plastic species can respond to different reproductive selection pressures in NZ by decreasing their CVs rather than their annual variation in clutch size. We
tested this idea by comparing change in CV with the geographical range size of the species across Europe, on the assumption that species with the widest distributions have the greatest potential for phenotypic plasticity (West-Eberhard 2003). Those species that had reduced their CVs the most were indeed those with the largest European ranges (log_{10} geographical ranges: r = -0.72, n = 8, P < 0.05; range data kindly supplied by R.D. Gregory). This last result is based on the unsupported assumption that the ability to vary CV has greater reproductive benefits than other changes to breeding behaviour.

Although other hypotheses for the trade-off between reductions in CV and CSR may be suggested, the existence of this trade-off clearly has important implications for understanding specific changes in breeding biology in different environments. Further study is now required to test whether the ability to vary CV has the greatest reproductive benefits, whether these traits do indeed vary in their plasticity, and the generality of the observed trade-off across other populations and species.

ACKNOWLEDGEMENTS

LITERATURE CITED