Tuesday, November 30, 2021

Attempts to anchor pelagic fairy prions (Pachyptila turtur) to their release site on Mana Island

TitleAttempts to anchor pelagic fairy prions (Pachyptila turtur) to their release site on Mana Island
Publication TypeJournal Article
Year of Publication2013
AuthorsMiskelly, CM, Gummer, H
Type of ArticleFull article
Keywordsdispersal, ecological restoration, petrel, prion, recruitment, seabird, survival, translocation

New Zealand conservation managers have a distinguished history in translocating forest birds, shorebirds and waterfowl to achieve conservation gains. Although New Zealand is a centre of seabird diversity, and many species are threatened and/or have suffered human-induced range reductions, until recently there had been few attempts to translocate seabirds. Reluctance to attempt translocations was due largely to the perceived risk of dispersal, and the expectation that birds would return to their source colony. Translocations have now been attempted with 10 species of burrow-nesting petrels in New Zealand, with chicks moved before they were likely to have developed awareness of their natal colony location, and hand-fed until they fledged. The translocation of 240 fairy prion chicks from Takapourewa (Stephens I) to Mana I in 2002-04 was one of few petrel translocation studies where systematic searches for returning translocated chicks at both the release site and the source colony were undertaken, and where a sample of marked control chicks allowed comparison of natural return rates with those of translocated chicks. Twenty translocated chicks returned to Mana I during 2004-12, and 25 were recovered at the source colony during 2005-08. Nearly identical proportions (c.20%) of translocated and control chicks were recovered, with higher recovery rates at the release site for each successive cohort. Birds appeared to develop their homing ability at different ages, and there was no apparent maximum age after which chicks should not be translocated. Exposing chicks to the source colony surface in daylight did not increase the risk of them returning to the source colony.

Full Text
PDF icon Full article586.15 KB